
AIAA{98{4807

PRELIMINARY RESULTS FROM THE

APPLICATION OF AUTOMATED ADJOINT

CODE GENERATION TO CFL3D

Alan Carle�

Rice University

Houston, Texas

carle@rice.edu

Mike Fagany

Rice University

Houston, Texas

mfagan@rice.edu

Lawrence L. Greenz

NASA Langley Research Center

Hampton, Virginia

l.l.green@larc.nasa.gov

Abstract

This report describes preliminary results obtained

using an automated adjoint code generator for Fortran

to augment a widely-used computational 
uid dynam-

ics 
ow solver to compute derivatives. These prelim-

inary results with this augmented code suggest that,

even in its infancy, the automated adjoint code gener-

ator can accurately and e�ciently deliver derivatives

for use in transonic Euler-based aerodynamic shape

optimization problems with hundreds to thousands of

independent design variables.

Introduction

Automatic di�erentiation (AD) is a set of techniques

for automatically augmenting computer codes to com-

pute derivatives of their outputs with respect to their

inputs. Numerous papers presented at recent Multidis-

ciplinary Analysis and Optimization (MA&O) confer-

ences have reported that AD can provide the deriva-

tives required for use in simulation-based design.1{8

These papers describe the use of ADIFOR, an AD

tool for Fortran.9, 10 ADIFOR implements the forward

mode of AD. For a code with n independent variables

�Faculty Fellow, Member, AIAA, Department of Computa-

tional and Applied Mathematics
yResearch Scientist, Department of Computer Science
zResearch Engineer, Senior Member, AIAA, Multidisci-

plinary Optimization Branch

Copyright c
 1998 by the American Institute of Aeronautics and Astro-

nautics, Inc. No copyright is asserted in the United States under Title 17, U.S.

Code. The U.S. Government has a royalty-free license to exercise all rights un-

der the copyright claimed herein for Governmental Purposes. All other rights

are reserved by the copyright owner.

(or design variables) and m dependent variables, the

forward mode computes the derivatives using time and

space proportional to n. Obviously, for problems with
a large number of independent variables, the compu-

tational cost of this method is prohibitive.

ADJIFOR, a substantially extended version of AD-

IFOR, implements the reverse (or adjoint) mode of

AD. For a code with n independent variables and m
dependent variables, the reverse mode computes the

derivatives using time proportional to m, not n, albeit
by using space proportional to the number of 
oating

point operations required to execute the original code.

Fortunately, as will be shown for the CFL3D (Compu-

tational Fluids Laboratory 3-Dimensional) code, spe-

cial mathematical properties of steady-state solutions

can be exploited to dramatically reduce the storage re-

quirements of the reverse mode. Other reverse mode

AD tools include Odyss�ee11 and TAMC.12

The Shape Optimization Problem

Aerodynamic shape analysis requires a grid gener-

ator to be coupled with a 
ow solver. Given a set of

shape parameters, the grid generator creates a grid.

The newly created grid then becomes an input to the


ow solver. The 
ow solver then computes the aero-

dynamic outputs. Often, the point of shape analysis

is to determine the values of shape parameters that

give rise to \favorable" aerodynamic outputs. The

process of seeking shape inputs that lead to the favor-

able outputs is called shape optimization. Conversion

of a shape analysis problem into a shape optimization

1

American Institute of Aeronautics and Astronautics



problem requires de�ning exactly what criteria consti-

tute \favorable." The de�nition of favorable includes

an objective function to be minimized or maximized.

Geometric and 
ow constraints might also be included.

Gradient-based shape optimization requires the

derivatives of the objective function and the con-

straints with respect to the parameters that control

the shape of the object. In the following text, Q rep-

resents the 
ow �eld, X the grid, and B the shape

parameters. A grid generator, G, generates the grid

X , given shape parameters B; that is, X = G(B).
The 
ow solver computes the �nal \converged" 
ow

�eld by iterating a stepping function S. The stepping
function computes the next iterate, using the current

iterate and grid. This dependence is emphasized by

writing S(Q;X) for the step. The initial iterate in the

procedure is indicated as Q0, which is usually inde-

pendent of the shape parameters B, except perhaps
on the boundaries. The �nal, or converged, 
ow �eld

is indicated as Q�, where Q� = S(Q�; X), meaning

that the solution has reached a steady state. The ob-

jective function F is a function of both the 
ow �eld

and the grid, and V is the value of F for a given Q
and X ; that is, V = F (Q;X).

With this notation in place, the following pseudocode

de�nes the canonical shape analysis procedure:

X = G(B)
Q = Q0

Do until Q \is converged"

Q = S(Q;X)

Enddo

V = F (Q;X)

As indicated previously, to solve gradient-based

shape optimization problems it is necessary to com-

pute the derivatives of the objective function and the

constraints with respect to the shape parameters. To

simplify the initial applications of ADJIFOR, no at-

tempt has been made to compute derivatives for prob-

lems with constraints.x Hence for the simpli�ed prob-

lems, only the derivatives of the dependent variable

V with respect to the components of the independent

variables B are required.

In this paper, a uniform notation for derivatives is

used. The matrix representation for the derivative lin-

ear operator for any function Z, i.e., the Jacobian of Z,
will be written JZ . In addition, the derivative of any

variable Z with respect to B will be written as Z 0, and

the derivative of V with respect to a variable Z will be

xThe techniques described below apply directly to constraints

that are functions of Q� and X by simply expanding F into

a vector-valued function that computes the objective function

and the constraints. The dimension of the derivatives expands

accordingly.

written as Z. In summary, the ADJIFOR-generated

code should compute V 0, or equivalently, B.

For additional convenience, I is used for any identity
matrix, 0 is used for the zero matrix, jZj is the number
of elements in matrix Z, and ZT is the transpose of

matrix Z. The dimensions of matrices will either be

obvious from context or explicitly indicated.

AD for Shape Optimization

The classic forward mode of automatic di�erenti-

ation accumulates derivatives as a computation pro-

ceeds from the inputs to outputs. It follows the control


ow of the original program and, for a matrix R with

p columns, computes the matrix product J �R to give

the p directional derivatives with a time and space

complexity that is roughly p times that of the original
program. If R = I , the forward mode computes J .
An alternative approach, the reverse mode, accumu-

lates the derivatives in the opposite direction|from

outputs to inputs. To propagate adjoints, one must

be able to reverse the 
ow of the program, and record

or recompute any intermediate value that nonlinearly

a�ects the �nal result. Once these technical di�cul-

ties are overcome, then, for a matrix L with q rows,

the matrix product L�J can be computed with a time

complexity that is roughly q times that of the original
program. If L = I , the reverse mode computes J .

The need to record intermediate program values

makes the storage requirements of adjoint codes po-

tentially very high, particularly for iterative methods.

Minimizing the storage requirements represents the

most signi�cant challenge to automatic adjoint tools.

Checkpointing strategies13 or additional mathematical

knowledge can be used to reduce these requirements.

Assuming that su�cient storage for the reverse

mode is available, the choice of forward mode or re-

verse mode for computing the Jacobian depends on

the number of independent variables p, the number of
dependent variables q, the ratio of the cost of comput-
ing a column of the Jacobian to the cost of computing

the function using the forward mode Of , and the ratio
of the cost of computing a row of the Jacobian to the

cost of computing the function using the reverse mode

Or. If q �Or < p �Of then reverse mode is indicated.

Since the operations performed by forward and reverse

modes are vector operations, Or and Of actually de-

pend on q and p, respectively. Or and Of depend on

platform, compiler, and application as well. Typically,

Of for forward mode-based ADIFOR ranges from .5 to

4.0. In limited tests so far, Or for reverse mode-based
ADJIFOR ranges from 6.5 to 20. Hence, the reverse

mode is particularly attractive for computing sensi-

tivities for shape optimization problems with a large

number of shape parameters, an objective function,

2

American Institute of Aeronautics and Astronautics



and a \few" 
ow constraints. For example, if Or = 20

and Of = 2, reverse mode outperforms forward mode

whenever p=q > 10, where q = 1 +#constraints.

To mathematically justify the approach to deriva-

tive computation for shape optimization problems, fur-

ther details about the framework are elaborated. The

framework is conceptually simple, relying only on the

fact that derivatives are linear functions and, conse-

quently, composition of derivatives is simple matrix

multiplication. The derivatives are viewed as linear

functions of all program variables in the following

canonical order: shape parameters B, grid X , 
ow

�eld Q, and objective value V . This convention is

used solely for mathematical convenience. The im-

plemented derivative computation does not form huge

matrices and then multiply them together.

Using this framework, the derivative of the shape

optimization problem can be written as

V 0 = L JF JSn : : : JS1 JG R,

where, using the notation for linear operators intro-

duced above, JZ represents the derivative of a function

Z evaluated at its inputs. In particular, JSk is the Ja-
cobian of S evaluated at Qk, the 
ow �eld at step k.
Moreover, JS� is the Jacobian of S evaluated at Q�,

the �nal 
ow �eld. Matrices L and R are block row

and column projection matrices that select the desired

independent and dependent variables, respectively.

For this problem, variable V is the desired output,

and B is the vector of desired inputs, hence, the two

projections are

L =
�
01�jBj 01�jXj 01�jQj 1

�

and

R =

0
BB@

IjBj�jBj

0jXj�jBj

0jQj�jBj

01�jBj

1
CCA :

As described previously, assuming su�cient storage

for recording intermediate program values for each of

the functions G;S1; : : : ; Sn, and F , reverse mode com-
putes V 0. If the number of steps n is large, then a

tremendous amount of storage will be required. Fortu-

nately, it is possible to take advantage of mathematical

properties of the 
ow solver to substantially reduce

the storage requirements for a steady-state solution.

This reverse mode variant is called the iterated reverse

mode. Christianson provides mathematical justi�ca-

tion of this approach when the 
ow solver is \su�-

ciently" converged.14

Applying the implicit function theorem to the

steady-state condition

Q� = S(Q�; X)

gives 0
BB@

B0

X 0

Q0
�

V 0

1
CCA = JS

0
BB@

B0

X 0

Q0
�

V 0

1
CCA :

Since Q� is a �xed point of S, the matrix

(B0; X 0; Q0
�; V

0)
T
is a �xed point of JS . Recall that

the framework expands derivative linear operators to

cover all variables. Since S has no e�ect on B, X , or

V , the appropriate entries in JS will be 1.

When JS� is contractive (i.e., kJS�k < 1), the

contractive mapping theorem guarantees that a �xed

point of JS� can be computed by simple iteration. The

ow solvers and test cases encountered so far appear

to have the necessary contractive properties. Applying

this technique to the shape optimization problem, V 0

can be computed as

V 0 = L JF JS� : : : JS� JG R:

For this computation, note that the same operator JS�
is used for each reverse-mode iteration. Note also that

the number of iterations required for convergence of

the derivatives is not necessarily the same as required

for convergence of the original function. Consequently,

instead of storing the intermediate values for all n
steps, it is su�cient to store the values for a single

step. Implementing the iterated reverse mode requires

only two small changes (less than 10 lines of code) to

the ADJIFOR-generated reverse-mode code: (1) turn

o� intermediate value recording for the �rst n�1 steps

of S, saving the values only for step n, and (2) mod-

ify the control loop for S to repeatedly execute the

reverse-mode code for S� until the derivatives converge
or until a user-speci�ed number of iterations has been

reached.

Description of the Codes

For the current study, G is a \home grown" wing

grid generator named MYGRID, S is the stepping

function in the CFL3D 
ow solver code, and the ob-

jective function F is taken to be the lift-to-drag ratio,

which is obtained by dividing the computed lift coef-

�cient, cl, by the computed drag coe�cient, cd. The

calculation of this objective function, cl=cd, was added
to the original CFL3D code. Description of MYGRID

and CFL3D follows.

MYGRID Grid Generation Code

MYGRID implements a fast and simple algebraic

method for generating wing grids. The grid generation

code was developed (in Fortran) for use in ADIFOR

and ADJIFOR studies. It is very robust in grid gen-

eration, but the code does not include many of the

3

American Institute of Aeronautics and Astronautics



advanced techniques commonly used in commercial

grid generation packages to ensure high quality grids.

MYGRID de�nes 3-D wings by a set of wing sec-

tions, using an expanded de�nition of the NACA four

digit airfoil section family, based upon real numbers

for the maximum thickness, maximum camber, and

location of maximum camber, rather than the usual

integer designation. This allows for airfoil shapes to be

incrementally perturbed in a continuous, rather than

a discrete, fashion, thus enabling the construction of

accurate �nite-di�erence approximations to verify the

results of ADIFOR and ADJIFOR. Each wing section

is described by eight design parameters: xle, yle, and
zle (the x, y and z leading edge coordinates), crd (the
wing section chord length to trailing edge), cmx (the

maximum camber line height in y-direction), xcm (the

streamwise location of maximum camber height), thk
(the streamwise maximum airfoil thickness), and tws
(the section twist angle).

The number of design variables can be increased by

simply increasing the number of wing sections that

are speci�ed. The code also allows the user to specify

the number of grid points in each of the coordinate

directions and provides a few choices that a�ect the

grid stretching and distribution.

The MYGRID code produces single-block grids that

were used in the initial demonstrations of this ad-

joint technology. Subsequently, a utility program was

developed by Biedron of NASA Langley Research Cen-

ter, which splits a single-block grid and its associated

CFL3D input �le into a user-speci�ed number of sub-

set grid blocks, while also splitting the boundary con-

dition speci�cation within the associated single-block

CFL3D input �le into a multiblock input speci�cation.

This grid block and input �le splitting utility program

was used within the current work to provide a mech-

anism to decompose a large grid into many smaller

pieces for parallel processing.

The CFL3D Flow Solver Code

The CFL3D code is a general purpose compu-

tational 
uid dynamics (CFD) solver developed by

Thomas, Rumsey, and Biedron of the NASA Langley

Research Center, with contributions from numerous

other researchers. From its inception in the early

1980's, the CFL3D code has been continuously im-

proved, applied to a wide variety of problems, veri�ed

extensively by experiment and other CFD results, and

widely distributed for use in industry.15{22

The CFL3D code solves the time-dependent

Reynolds-averaged Navier-Stokes equations in conser-

vation form using upwind-biasing for the convective

and pressure terms, and central di�erencing for the

shear stress and heat transfer terms. The code in-

cludes the ability to solve inviscid, laminar, or turbu-

lent 
ows around complex 2-D or 3-D geometries us-

ing one of four possible grid schemes (point-matched,

patched, overlapped, or embedded). CFL3D includes

the ability to compute steady or unsteady 
ows with

implicit time advancement. Both multigrid and mesh

sequencing techniques can be used for convergence

acceleration. The code also provides numerous tur-

bulence models, including Baldwin-Lomax, Baldwin-

Barth, and Spalart-Allmaras, as well as several other

popular models.

Two distinct versions of the CFL3D code were

used in this work: (1) the sequential CFL3D version

5.0 code and (2) an existing block-parallel version of

CFL3D, from the version 4.1 code that employs MPI

(Message Passing Interface) routines to implement a

distributed-memory parallel 
ow solution.23 Although

these two codes are substantially di�erent internally,

and the sequential version 5.0 code includes some new

features not found in the parallel version 4.1 code, they

have been found to produce essentially the same re-

sults for test cases similar to those used in this work.

A forthcoming NASA Technical Memorandum docu-

ments the CFL3D version 5.0 code and its di�erences

from previous code versions, including: (1) sliding

patched-zones for use in rotor-stator computations and

(2) improved computational e�ciency and memory us-

age.

For simplicity, only a limited subset of the possible

CFL3D code options have been demonstrated within

the scope of the work presented in this paper, although

the only portions of the CFL3D code that were pur-

posely avoided were the turbulence models. Based

upon previous work with the ADIFOR code genera-

tion tool, the ADJIFOR-generated CFL3D code is ex-

pected to work correctly and accurately for the entire

suite of boundary conditions, as well as the numer-

ous solver and multigrid options within the code. It is

expected that the primary impact of these additional

options will be to increase the storage requirements

of the adjoint code in proportion to the increased

complexity of the computation. Adjoint code for the

turbulence models could easily be incorporated in the

adjoint code. Also, the use of patched or overset grids

would require ADJIFOR processing of, respectively,

the RONNIE or MAGGIE utility programs provided

with CFL3D; ADJIFOR processing of these utilities

has not yet been attempted.

For this current work, the CFL3D code was used to

solve steady, inviscid, transonic 
ow around a simple

3-D transport wing. The algorithmic choices included

the use of local time stepping, Roe's 
ux-di�erence

splitting scheme, and scalar tri-diagonal matrix inver-

sion with smooth 
ux-limiters. Multigrid and grid

4

American Institute of Aeronautics and Astronautics



sequencing were not used in these demonstrations.

The test cases used either single-block grids, or grids

that had been decomposed into smaller, point-matched

PLOT3D multiblock style grids via the splitter utility

program previous described.

Description of the Test Problem

The choice of a test problem for this ADJIFOR

demonstration was in
uenced by two considerations:

(1) the problem needed to resemble a realistic tran-

sonic shape optimization problem, and (2) the problem

needed to be small enough to permit validation of nu-

merical results using ADIFOR and �nite di�erences.

In light of these considerations, a small-sized shape

parameter speci�cation was developed. Speci�cally,

the test problem uses 88 shape parameters to de�ne

a swept and tapered wing, similar to those used on

numerous commercial transport aircraft today. Given

these 88 shape parameters, MYGRID was used to gen-

erate 33 � 9 � 9 and 65 � 17 � 17 one-zone grids.

The grid splitter was then used to split each of these

one-zone grids into two-zone, four-zone and eight-zone

grids. Test cases were run under an Euler regime at

Mach :84, alpha 3:06�. CFL3D 5.0 was tested only

on the 33 � 9 � 9 one-zone grid. CFL3D 4.1 was

tested on all eight grids. These grid sizes was cho-

sen for this adjoint demonstration as a compromise

between the 
ow modeling resolution and the initial

in-core storage requirement for the adjoint 
ow solver.

The adjoint capability was �rst demonstrated on the


ow solver, without using the grid generation package.

Each of the grid x-y-z coordinates input to CFL3D was

considered to be an independent variable. This yielded

a potentially large number of design variables, up to

a total of 8019 (33�9�9�3), with minimal time and

storage requirements for the CFD solver.

Currently, adjoint versions of the grid and the 
ow

solver have been coupled to produce 
ow sensitivi-

ties with respect to the shape speci�cation parameters

(xle, yle, zle, crd, cmx, xcm, thk, and tws) at each
of the input sections. The number of independent de-

sign variables can be increased by simply increasing

the number and distribution of input wing sections,

so long as the spanwise grid resolution is approxi-

mately the same as the number and distribution of

input sections. For this test case, there are 11 input

wing sections and 8 design variables per wing section

for a total of 88 shape speci�cation design variables.

If many more (or more densely spaced) wing sections

are speci�ed than spanwise grid lines computed, the

process will still work, but some of the design variables

may become ine�ective, due to the linear interpolation

between the input wing sections; several interpolations

to obtain grid lines may be possible, and the e�ect of a

design variable at any one input section then becomes

less clear.

For this test case, the wing span is taken to be

1.0, the root chord is 0.6737, the tip chord is 0.3789.

For simplicity of grid generation, a NACA 0010 wing

section was used. The grid generation for this case

was done with the MYGRID program, described pre-

viously. Since multigrid was not used in this study,

converging the 
ow solution for this problem took

about 1000 cycles.

Since the grid is so coarse, particular attention was

given to grid stretching and distribution in order to

obtain the most reasonable inviscid 
ow solution grid

possible within the limitations of MYGRID. In the

streamwise coordinate direction with 33 (or 65) grid

points, the grid direction index starts, as is common,

at the lower downstream wake, wraps around the air-

foil from the lower trailing edge, to the leading edge,

to the upper trailing edge, and continues to the upper

downstream wake. Grid clustering has been provided

near the leading and trailing edges for each wing sec-

tion. An unusually large number of grid cells (50

percent) were placed in the wake, distributed equally

between the upper and lower wake regions, to improve

the grid distribution for this coarse grid case. Both the

wing normal and spanwise directions have 9 (or 17)

points. In the normal direction, grid points are some-

what clustered toward the airfoil surface; grid lines are

perpendicular to the airfoil surface near the leading

edge, but vertical beyond the airfoil maximum thick-

ness point and in the wake. In the spanwise direction,

the grid points are equally spaced along the wing span.

In the test problem, the wing tip has zero thickness and

the outer boundary is placed at a distance of 5 wing

semi-spans away from the airfoil surface.

It is worth noting that, from the authors' experience,

the initial ADIFOR/ADJIFOR validation for accu-

racy, relative to carefully constructed �nite-di�erence

approximations, can usually be done on such coarse

grids as described above. In the current studies, grids

as coarse as 17�5�5 points were used in the initial

veri�cation of ADIFOR and ADJIFOR results. The

accuracy of the ADIFOR/ADJIFOR derivatives for

reasonably short runs, relative to such �nite-di�erence

approximations, appears to be independent of the res-

olution of the 
ow �eld features. This is true as long

as the coarseness of the grid does not lead to incon-

sistencies in the basic 
ow solver algorithm. In fact,

although the 17�5�5 grid is already extremely coarse,
it may be possible to do these validation tests on a

9�3�3 grid, but the authors were uncertain whether

that level of coarseness would violate some unknown

5-point operator assumption that may be buried deep

within the CFL3D computational algorithm. There is

5

American Institute of Aeronautics and Astronautics



probably no way to prove that validation can always

be done on these coarse grids; it may even be possible

to prove that such tests can produce misleading, or

incorrect, results for some cases. However, the virtue

of such coarse grid validation, if it works, is that the

results can be converged quickly to machine zero with

limited time invested in grid generation.

Results

The goal of this work was to investigate the e�ec-

tiveness of the ADJIFOR-generated adjoint code, in

conjunction with the iterated reverse mode. Com-

puting platforms used in this e�ort included: an 8-

processor Sun Enterprise E4000 shared memory server,

a 4-processor IBM SP2 shared memory node, and a 4-

processor SGI Power Challenge shared memory node.

In the following text and tables, these three shared

memory processors are referred to as the SUN SMP,

IBM SMP and SGI SMP, respectively. For CFL3D

5.0, test cases were executed using a single processor,

and for CFL3D 4.1, two processors (one host and one

compute node) were used for the one-zone test cases,

three processors (one host and two compute nodes) for

the two-zone test cases, �ve processors (one host and

four compute nodes) for the four-zone cases, and nine

processors (one host and eight compute nodes) for the

eight-zone cases.{ All test cases were run using 64-bit


oating-point arithmetic.

Table 1 shows derivative values for tws computed

using the forward mode by ADIFOR and the iterated

reverse mode by ADJIFOR for the 33 � 9 � 9 one-

zone test case using the sequential and parallel versions

of CFL3D. For forward mode, the ADIFOR-enhanced

MYGRID and 1000 steps of the ADIFOR-enhanced

CFL3D were executed. For iterated reverse-mode,

the ADJIFOR-enhanced MYGRID and 1000 steps of

CFL3D, followed by 1000 adjoint iterations of CFL3D

were executed. Forward-mode and iterated reverse-

mode derivative values for CFL3D 5.0 show excellent

agreement. The forward-mode and iterated reverse-

mode derivative values for CFL3D 4.1 likewise show

excellent agreement. For both codes, �nite-di�erence

approximations (not shown in the table) agree with the

ADIFOR-generated derivatives to more than six sig-

ni�cant �gures. The discrepancies between the deriva-

tives computed for CFL3D 5.0 and CFL3D 4.1 have

not yet been investigated.

Table 2 presents timings based on CFL3D 5.0,

including the shape analysis procedure, �nite dif-

ferences, ADIFOR-generated forward-mode derivative

{Executing CFL3D 5.0 on a single processor of multiproces-

sor hardware enabled the fairest possible performance compar-

isons between the various sensitivity-enhanced sequential and

parallel versions of CFL3D.

code, and the ADJIFOR-generated adjoint code us-

ing the same 33 � 9 � 9 one-zone test case. No-

tice that the cost of computing all 88 derivatives us-

ing ADJIFOR on the SUN SMP is about 10 percent

of the cost of using �nite di�erences. The timing

numbers shown in Table 2 is intended to illustrate

the performance of ADJIFOR-generated code rela-

tive to other standard methods for computing deriva-

tives. As such, they do not re
ect the possible use of

coarse-grained parallelization within �nite di�erences

or forward-mode derivative computations to improve

performance. Also, the tables do not re
ect the poten-

tial for improved e�ciency of ADIFOR-generated code

through the use of the incremental iterative method

developed by Taylor and Oloso.24

Tables 3 and 4 summarize the time and storage

requirements of the iterated reverse mode version of

CFL3D 4.1. In Table 3, for each of the eight test

cases, the following information is provided: (1) time

required for the original function, (2) time required for

the iterated reverse mode, (3) the ratio of the iterated

reverse mode and function times. Table 3 shows that

the iterated reverse mode is scaling better than the

original CFL3D 4.1 function evaluation as the number

of grid zones and processes is increased. The iterated

reverse mode shows excellent performance on all eight

test cases.

In Table 4, for each of the eight cases, the follow-

ing information is provided (per compute node): (1)

memory required for the original function, (2) memory

(static and dynamic) for the iterated reverse mode, (3)

disk space required for the iterated reverse mode, and

(4) bytes per point summaries of the dynamic mem-

ory and disk requirements of the iterated reverse mode.

The table indicates an approximation of 8000 bytes of

dynamic memory per grid point and 32000 bytes of

disk space per grid point for an iterated reverse mode

calculation. This approximation yields a 3.2 GByte

dynamic memory requirement and a 12.8 GByte disk

space requirement for the target 400,000 point grid.

Consequently, a 32-processor parallel computer con-

sisting of processors with 128 MBytes memory and 400

Mbytes disk could be used to compute the derivatives

for this 400,000 point problem.

Finally, in Fig. 1, the convergence behavior for xle
for 6 of the 11 wing sections is shown for CFL3D 5.0.

Convergence for all other design parameters and wing

sections is similar. Derivatives do indeed converge, and

appear to do so in perhaps half as many steps as the

original 
ow solver.

It should be noted that several successful \by-hand"

(rather than automated) adjoint demonstrations with

CFD codes already exist.25{28 The variations in these

adjoint solution techniques and the iterated reverse

6

American Institute of Aeronautics and Astronautics



mode make direct comparisons di�cult. It is ex-

pected that ADJIFOR-generated code will always be

more pessimistic in data storage requirements than

the best by-hand adjoint methods employing signif-

icant knowledge about the code structure and solu-

tion process. Nonetheless, the performance of the

ADJIFOR-generated code is competitive with the by-

hand methods. Furthermore, the time required to

produce adjoint versions of existing codes using ADJI-

FOR is surely orders of magnitude less than the time

required for similar by-hand implementations.

Signi�cance of Results

First, this work demonstrated the use of the ADJI-

FOR automatic adjoint code generation tool for the

computation of shape sensitivities for a small prob-

lem. The derivatives for the design variables in this

small problem have been veri�ed to be accurate, thus

providing con�dence that the ADJIFOR tool is work-

ing correctly. This is signi�cant because the validation

of the adjoint results by �nite di�erences or forward-

mode di�erentiation will become more cumbersome

as the number of design variables increases, and as

the adjoint code becomes more e�cient relative to the

comparison methods.

Second, this work developed the iterated reverse

mode for CFL3D. The iterated reverse mode uses a

well-converged solution to store intermediate program

values and then repeatedly executes the �nal iteration

until the derivatives converge. This technique provides

accurate derivatives with substantially smaller storage

requirements than the standard reverse mode, and, in

addition, appears to converge the derivatives in fewer

iterations than were required for the solution conver-

gence. The reduced storage requirements should make

it possible to tackle much larger sensitivity and opti-

mization problems.

Third, this work demonstrated that the ADJIFOR

prototype is capable of providing shape sensitivities at

a cost comparable to about 7 evaluations of CFL3D, on

the SUN SMP, for a test case with 88 design variables.

This compares favorably to the 89 function evaluations

that would have been required for one-sided �nite dif-

ferences. These timing results agree with expectations.

The current demonstration represents a signi�cant

advance in the ability to automatically generate sensi-

tivity code for sensitivity analysis or shape optimiza-

tion using a widely distributed industrial-grade aero-

dynamic solver. Furthermore, a special e�ort has been

made to accommodate the aerospace industry's need

for rigorous validation. More work remains to be done

on several fronts to make this demonstration more re-

alistic.

Conclusions

The ADJIFOR automatic adjoint code generation

tool has been applied to both a sequential and a

parallel version of the CFL3D computational 
uid

dynamics code. The resulting ADJIFOR-generated

codes have been demonstrated with one-zone, two-

zone, four-zone, and eight-zone grids. The ADJIFOR

application to these CFL3D code versions produced

exact derivatives, with respect to shape parameters,

of a sample objective function: the lift-to-drag ra-

tio. The computed reverse-mode derivatives were

compared with both forward-mode results and �nite-

di�erence approximations to validate their accuracy.

The derivatives were obtained for steady-state prob-

lems using a technique known as the iterated reverse

mode which records the last step in a function conver-

gence and replays this information during the adjoint

solution process until the derivatives converge.

The resulting adjoint sensitivity analysis was exe-

cuted on multiprocessor parallel computers using the

amount of storage typically available on these kinds

of machines. For 88 design variables, the reverse

mode code required execution times ranging from 7

to 21 function evaluations, depending upon machine

type and compiler options. For this example, the

reverse-mode derivatives converge to acceptable accu-

racy bounds within about half the number of iterations

required for the function itself to converge to a steady

state, resulting in an additional performance bene�t

relative to either the forward-mode or �nite-di�erence

methods for computing derivatives.

Remaining Work

The most immediate issue remaining for the ADJI-

FOR prototype is the reduction of the storage required

for intermediate values in ADJIFOR-generated code.

Two strategies will be investigated: eliminating the

storage for unnecessary intermediate values (such as

those that are only used linearly), and recomputing,

rather than storing, other intermediate values.

Additional improvements to the prototype will be

driven by a more thorough investigation of the adjoint

code generated for CFL3D. The ADJIFOR-generated

code will be demonstrated for laminar and turbulent


ows, with other boundary condition options, and on

larger, multiblock grids with grid sequencing, multi-

grid, and other convergence acceleration techniques.

Previous experience with the forward-mode ADIFOR

tool suggests that none of these issues should pose a

di�cult problem for the reverse-mode ADJIFOR tool.

Each issue, however, must be addressed with a view

toward rigorous validation for accuracy and the best-

attainable e�ciency. Also, the e�ciency of the adjoint

code must be demonstrated within a realistic opti-

7

American Institute of Aeronautics and Astronautics



mization problem, rather than just within a sensitivity

analysis.

From discussions with engineers doing shape opti-

mization for a major aerospace �rm in the United

States, the authors believe that the minimum realistic

target test problem for this adjoint demonstration is a

wing-body con�guration in inviscid 
ow with at least

400,000 grid points and about 500 design variables. In

such a test problem the grid size, the con�guration

complexity, and the number of design problems would

be consistent with the current practices for shape op-

timization of new aircraft.

It is believed that grid size can be increased with

little or no performance penalty using the ADJIFOR-

generated parallel version of CFL3D, which uses MPI

message passing to distribute large problems across

numerous processors working in parallel. Thus, each

processor is required to solve only a small piece of a

larger problem. In theory, parallelism provides access

to the large amounts of storage space required for the

iterated reverse mode. It has not yet been shown, how-

ever, that good 
ow-solver convergence, a prerequisite

for using the iterated reverse mode, can be achieved

for grids that have been divided into a large number

of zones.

One question that has only partially been answered

at this point is how the convergence of function and ad-

joint codes in the shape analysis procedure a�ects the

values of derivatives computed by the iterated reverse

mode. In this work, the derivatives were observed to

converge to acceptable accuracy bounds in fewer iter-

ations than the function required to reach a steady

state, starting the adjoint calculation from a well-

converged function solution. It is not known whether

this will be true for a broad range of con�gurations and

classes of shape parameters. Also, the exact mecha-

nism for this rapid convergence of the derivatives is not

well understood. Convergence of the shape analysis

procedure based, as is usual, on the convergence of the

con�guration force and moment coe�cients (usually

3 or 4 orders of magnitude convergence) rather than

on the convergence of the 
ow �eld itself (6 or more

orders of magnitude convergence), will impact the ac-

curacy of the derivatives within the shape sensitivity

analysis and shape optimization procedures. But the

exact impact of such reduced convergence has not been

quanti�ed. Furthermore, it is not known whether the

adjoint method demonstrated here can be applied to

time-dependent problems. In fact, it is expected that

many, if not all, function iterations must be logged in

order to construct accurate reverse-mode derivatives

for time-dependent problems. The impact of logging

many iterations of a time-dependent problem will be

a huge increase in the storage requirements necessary

to solve the adjoint problem.

Finally, there is theoretical and practical interest in

clarifying the relationship between the iterated reverse

mode and the various by-hand adjoint approaches.

Ideally, this investigation will suggest ways in which

automated methods may be improved to achieve e�-

ciency comparable to the best by-hand approaches.

Acknowledgements

The authors wish to express their sincere thanks to

Dr. Tom Zang, head of the MultiDisciplinary Opti-

mization Branch (MDOB) at NASA Langley Research

Center (LaRC), without whose support through both

funding and advocacy this project would not have been

possible. The authors wish to thank Dr. Chris Rum-

sey of the Aerodynamic and Acoustic Methods Branch

(AAMB) at NASA LaRC for the guidance he pro-

vided to the authors in the use of the CFL3D code.

The authors also wish to express their thanks to Dr.

Bob Biedron of AAMB at NASA LaRC for his valida-

tion e�orts with the parallel CFL3D code version and

the development of the grid block splitter code for the

adjoint solution of large grid problems. The authors

express their thanks to Dr. Perry Newman of MDOB

at NASA LaRC for his direction and support of MDOB

research in automatic di�erentiation tools. The au-

thors express their thanks to Drs. Shreekant Agrawal,

Geojoe Kuruvila, Peter Hartwich, Pichuraman Sun-

daram, James Hager, Bob Narducci, and Eric Unger

of Boeing Long Beach for their informative discussions

with the authors about the status of shape optimiza-

tion within the NASA High Speed Research Program.

Finally, the authors express their thanks to Dr. Chris

Bischof of Argonne National Laboratories for mathe-

matical developments contributing to the ADJIFOR

tool.

This work was supported by the National Aero-

nautics and Space Administration under Cooperative

Agreement Number NCC 1 234, and by the National

Science Foundation, through the Center for Research

on Parallel Computation, under Cooperative Agree-

ment No. CCR-9120008. Carle and Fagan were re-

sponsible for adjoint code generation and initial code

execution demonstrations. Green was responsible for

the problem de�nition, grid generation, and CFL3D

code support.

References
1Unger, E., and Hall, L., \The Use of Automatic

Di�erentiation in an Aircraft Design Problem," 5th

AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, AIAA-94-4260-CP, Panama City,

FL., Sept. 1994, pp. 64{72.
2Bischof, C., Knau�, T., Green, L., and Haigler,

K., \Parallel Calculation of Sensitivity Derivatives for

8

American Institute of Aeronautics and Astronautics



Aircraft Design Using Automatic Di�erentiation," 5th

AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, AIAA-94-4261-CP, Panama City,

FL., Sept. 1994, pp. 73{86.
3Korivi, V., Sherman, L., Taylor, A., Hou, G., Green,

L., and Newman, P., \First- and Second-order Aerodynamic

Sensitivity Derivatves via Automatic Di�erentiation with Incre-

mental Iterative Methods," 5th AIAA/NASA/USAF/ISSMO

Symposium on Multidisciplinary Analysis and Optimization,

AIAA-94-4262-CP, Panama City, FL., Sept. 1994, pp. 87{120.
4Korivi, V., Taylor, A., and Newman, P., \Aerody-

namic Optimization Studies using a 3-d Supersonic Euler

Code with E�cient Calculation of Sensitivity Derivatives," 5th

AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, AIAA-94-4270-CP, Panama City,

FL., Sept. 1994, pp. 170{194.
5Su, J. and Renaud, J., \Automatic Di�erentiation in Ro-

bust Optimization," 6th AIAA/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, AIAA-96-4005-

CP, Bellevue, WA., Sept. 1996, pp. 201{215.
6Wujek, B., and Renaud, J., \Automatic Di�erentiation

for More E�cient Multidisciplinary Design Analysis and Opti-

mization," 6th AIAA/NASA/ISSMO Symposium on Multidis-

ciplinary Analysis and Optimization, AIAA-96-4117-CP, Belle-

vue, WA., Sept. 1996, pp. 1151{1166.
7Moen, C., Spence, P., Meza, J., and Plantenga, T., \Auto-

matic Di�erentiation for Gradient-based Optimization of Radia-

tively Heated Microelectronics Manufacturing Equipment," 6th

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analy-

sis and Ooptimization, AIAA-96-4118-CP, Bellevue, WA., Sept.

1996, pp. 1167{1175.
8Issac, J., and Kapania, R., \Aeroelastic Sensitivity

Analysis of Wings using Automatic Di�erentiation," 6th

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analy-

sis and Optimization, AIAA-96-4119-CP, Bellevue, WA., Sept.

1996, pp. 1176{1186.
9Bischof, C., Carle, A., Corliss, G., and Griewank, A.,

\ADIFOR|Generating Derivative Codes from FORTRAN Pro-

grams," Scienti�c Programming, Vol. 1, 1992, pp. 11{29.
10Bischof, C., Carle, A., Khademi, P., and Mauer, A., \Ad-

ifor 2.0: Automatic Di�erentiation of Fortran 77 Programs,"

IEEE Computational Science and Engineering, Vol. 3, No. 3,

Fall 1996, pp. 18{32.
11Rostaing, N., Dalmas, S., and Galligo, A., \Automatic Dif-

ferentiation in Odyss�ee," Tellus, 45A, 1993.
12Giering, R., and Kaminski, T., \Recipes for Adjoint Code

Construction," ACM TOMS, 1998, in press.
13Griewank, A., \Achieving Logarithmic Growth of Tempo-

ral and Spatial Complexity in Reverse Automatic Di�erentia-

tion," Optimization Methods and Software, Vol. 1, No. 1, 1992,

pp. 35{54.
14Christianson, B., \Reverse Accumulation and Attractive

Fixed Points," Optimization Methods and Software, Vol. 3,

1994, pp. 311{326.
15Biedron, R., and Thomas, J., \A Generalized Patched-Grid

Algorithmwith Application to the F-18 Forebody with Actuated

Control Strake," Computing Systems in Engineering, Vol. 1,

No. 2{4, 1990, pp. 563{576.
16Compton, W., Thomas, J., Abeyounis, W., and Mason,

M., \Transonic Navier-Stokes Solutions of Three-Dimensional

Afterbody Flows," NASA TM 4111, July 1989.
17Gha�ari, F., Luckring, J., Thomas, J., Bates, B., and

Biedron, R., \Multiblock Navier-Stokes Solutions About the

F/A-18 Wing-LEX-Fuselage Con�guration," Journal of Air-

craft, Vol. 30, No. 3, 1993, pp. 293{303.

18Rumsey, C., Biedron, R., and Thomas, J., \CFL3D: Its

History and Some Recent Applications," NASA TM 112861,

May 1997, presented at the \Godunov's Method for Gas Dy-

namics" Symposium, Ann Arbor, MI, May 1997.
19Rumsey, C., and Vatsa, V., \Comparison of the Predictive

Capabilities of Several Turbulence Models," Journal of Aircraft,

Vol. 32, No. 3, 1995, pp. 510{514.
20Rumsey, C., Sanetrik, M., Biedron, R., Melson, N., and

Parlette, E., \E�ciency and Accuracy of Time-Accurate Tur-

bulent Navier-Stokes Computations," Computers & Fluids,

Vol. 25, No. 2, 1996, pp. 217{236.
21Thomas, J., Krist, S., and Anderson, W., \Navier-

Stokes Computations of Vortical Flows Over Low-Aspect-Ratio

Wings," AIAA Journal , Vol. 28, No. 2, 1990, pp. 205{212.
22Vatsa, V., Thomas, J., and Wedan, B., \Navier-Stokes

Computations of a Prolate Spheroid at Angle of Attack," Jour-

nal of Aircraft, Vol. 26, No. 11, 1989, pp. 986{993.
23Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W.,

and Dongarra, J., MPI: The Complete Reference, MIT Press,

1995.
24Taylor, A. C., III, \Automatic Di�erentiation of Advanced

Flow-Analysis Codes in Incremental Iterative Form for Multi-

disciplinary Applications," Old Dominion University Research

Foundation (ODURF), Tech. Rep. 96{147, 1996.
25Reuther, J., Alonso, J. J., Rimlinger, M. J., and Jameson,

A., \Aerodynamic Shape Optimization of Supersonic Aircraft

Con�gurations via an Adjoint Formulation on Distributed Mem-

ory Parallel Computers," AIAA Paper No. 96-4045, Sept. 1996.
26Anderson, W. Kyle, and Venkatakrishnan, V., \Aerody-

namic Design Optimization on Unstructured Grids with a Con-

tinuous Adjoint Formulation," AIAA Paper No. 97-0643, 1997.
27Anderson, W. Kyle, and Bonhaus, Daryl, L., \Aerody-

namic Design on Unstructured Grids for Turbulent Flows,"

NASA TM 112867, Jun. 1997.
28Kuruvila, G., Hager, J. O., and Sundaram, P., \Aerody-

namic Gradients Using Three Methods," HSR Airframe Techni-

cal Review, Los Angeles, CA, Feb. 1998.

9

American Institute of Aeronautics and Astronautics



Table 1. Derivatives of V with respect to tws (tws).

CFL3D 5.0 CFL3D 4.1

Wing ADIFOR ADJIFOR ADIFOR ADJIFOR

Section Forward Mode Iterated Reverse Mode Forward Mode Iterated Reverse Mode

1 -8.9783175395046E-02 -8.9783304818605E-02 -9.3596682272919D-02 -9.3596521007446D-02

2 -0.13777493172478 -0.13777513263480 -0.14369275653618 -0.14369243579322

3 -0.14033316309455 -0.14033340058874 -0.14565042805518 -0.14565008124860

4 -0.14268876834394 -0.14268902700298 -0.14780920646490 -0.14780883618091

5 -0.14484174747294 -0.14484201187753 -0.15016909176536 -0.15016870059014

6 -0.19469374919372 -0.19469415020925 -0.20168090120663 -0.20168033692085

7 -0.14544334149336 -0.14544361023223 -0.15104420505533 -0.15104381205916

8 -0.13203643206894 -0.13203667493141 -0.13700349641320 -0.13700314053909

9 -0.13562460240379 -0.13562481525497 0.14102086061985 -0.14102054023426

10 -0.15620785249790 -0.15620803120294 -0.16309629767528 -0.16309601114465

11 -2.2707098520427E-02 -2.2707403366190E-02 -8.2278444748449D-02 -8.2278045874506D-02

Table 2. Comparison of timings for baseline function evaluation and derivative

computation using one-sided �nite di�erences, forward mode, and the iterated

reverse mode with a single processor, CFL3D 5.0.

Machine Timings (seconds) Ratio to Function

SUN SMP Function 111 1

One-sided FD 987E+1 89

Forward Mode 324E+2 292

Iterated Reverse Mode 810 7.3

IBM SMP Function 132 1

One-sided FD 117E+2 89

Forward Mode 530E+2 402

Iterated Reverse Mode 146E+1 11.1

SGI SMP Function 175 1

One-sided FD 156E+2 89

Forward Mode 123E+3 701

Iterated Reverse Mode 375E+1 21.4

Table 3. Summary of timings (in seconds) for baseline function evaluation and the

iterated reverse mode for CFL3D 4.1 on the IBM SMP.

Test Case 33�9�9 65�17�17
# zones 1 2 4 8 1 2 4 8

Function Time 141 107 88 71 1385 1070 682 336

Iterated Reverse 1447 870 625 426 11697 7606 4634 2568

Mode Time

Ratio of Iterated 10.2 8.13 7.10 6.00 8.45 7.10 6.79 7.64

Reverse Mode to

Function Time

10

American Institute of Aeronautics and Astronautics



Table 4. Summary of storage requirements per compute node for baseline function

evaluation and the iterated reverse mode for CFL3D 4.1 on the IBM SMP.

Test Case 33�9�9 65�17�17
# zones 1 2 4 8 1 2 4 8

# pts 2673 1377 765 425 18785 9537 5049 2673

Function Memory 9.7M 9.6M 9.9M 10M 14M 13M 13M 14M

Iterated Reverse 21M 11M 6M 3.4M 150M 75M 40M 21M

Mode Dynamic Memory

Iterated Reverse 17M 17M 18M 18.6M 20M 23M 25M 27M

Mode Static Memory

Total Iterated Reverse 38M 28M 24M 22M 170M 98M 65M 48M

Mode Memory

Iterated Reverse 84M 44M 25M 14M 601M 304M 165M 90M

Mode Disk

Iterated Reverse Mode 7776 7745 7875 7965 7885 7824 7923 7950

Dynamic Memory

(bytes/pt)

Iterated Reverse Mode 31598 31683 32518 33918 31969 31907 32610 33659

Disk (bytes/pt)

0 250 500 750 1000
0.1

0.2

0.3

0.4

0.5
wing section 1

0 250 500 750 1000
−5.44

−5.42

−5.4

−5.38

−5.36

−5.34
wing section 2

0 250 500 750 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
wing section 6

0 250 500 750 1000
0.86

0.88

0.9

0.92

0.94

0.96
wing section 7

0 250 500 750 1000
3.9

3.95

4

4.05

4.1

4.15

4.2

4.25
wing section 10

0 250 500 750 1000
0.8

0.9

1

1.1

1.2
wing section 11

Fig. 1. Iterated reverse mode AD convergence for the derivatives of V with

respect to xle (xle), CFL3D 5.0.

11

American Institute of Aeronautics and Astronautics


